Development of Micro-Pattern Gaseous Detectors for Nuclear Reaction Studies

Author:

Bhattacharya P,Sen A,Ghosh T K,Majumdar N,Mukhopadhyay S

Abstract

One of the frontiers of today’s nuclear physics research is the synthesis of Super Heavy Elements (SHE). Fusion-fission dynamics, namely the competition between quasi fission and fusion is one of the key challenges to optimize the SHE. To have an insight into the dynamics, one requires the study of fission fragment mass and angular distribution near barrier energies for heavy-ion induced fission reactions. Recent successful installation of linear accelerators in India offers a unique opportunity to study the dynamics of nuclear reactions and formation process of SHE. For the effective utilization of these current, as well as upcoming facilities, development of novel detectors to study reaction dynamics, formation process of SHE with heavier projectiles and higher beam energies is needed. Gaseous detectors have undergone a rapid improvement in terms of spatial, temporal and energy resolution, rate capability, radiation hardness, ion feedback etc., ushering in a new genre of micro-structured devices based on semi-conductor technology, commonly known as Micro-Pattern Gaseous Detectors (MPGDs). Although many of the MPGD structures were primarily developed for high-rate tracking of charged particles in high energy physics experiments, stability of operation, simplicity of construction and relatively low cost make these detectors suitable for other applications, such as low-energy nuclear physics experiments. The present activities encompass a detailed evaluation of the operational conditions of Micromesh-Multi Wire and THGEM-Multi Wire hybrid detector operated in low-pressure isobutane gas with a view to optimizing their use in the detection of charged particles and fission fragments.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3