Author:
Kulkarni Rohan,Kakade Suhas,Mawande Shamli,Sadakale Ranjit
Abstract
Abstract
The paper proposes the use of Artificial Neural Networks (ANN) and Polynomial Regression (PR) algorithms for estimating the output of a Solar Photovoltaic (PV) Plant. The study compares the performance of these two methods, using a dataset of weather parameters and PV Plant output. The results show that both the methods can effectively estimate the PV Plant output, with the ANN model having a slightly higher accuracy than the polynomial regression model as ANNs can learn the nonlinear relationship between input stochastic parameters and output in a better manner. The study highlights the potential of machine learning techniques for optimizing the performance of solar PV plants and improving their efficiency.
Subject
Computer Science Applications,History,Education