Feature extraction and clustering of electricity market data based on GCN and graph filtering

Author:

Huang Longda,Xu Pan,Weng Liguo

Abstract

Abstract As the power grid undergoes transformation and the Internet’s influence grows, the electricity market is evolving towards informatization. Traditional power marketing methods struggle to cope with the vast and intricate data of the modern power market. To address this challenge, this study employs random forest and PBF models for processing electricity market data. Additionally, it introduces the spectral clustering algorithm for a comprehensive analysis. The experimental results successfully extract diverse electricity consumption characteristics. This approach aids in advancing the informatization of power grid enterprises, boosting their capacity to perceive power data, and furnishing decision-makers with dependable support.

Publisher

IOP Publishing

Reference12 articles.

1. A review of energy internet information technology research;Wang;Computer Research and Development,2015

2. Energy Big Data Storage and Parallel Processing Method Based on ODPs;Ma,2022

3. Outage management of distribution systems incorporating information from smart meters;Jiang;IEEE Transactions on power systems,2015

4. Detection and classification of islanding and power quality disturbances in microgrid using hybrid signal processing and data mining techniques;Chakravorti;IET Signal Processing,2018

5. An internet-inspired electricity grid;Boyd;IEEE Spectrum,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3