The enhanced performance of piezoelectric nanogenerator by increasing zinc precursor concentration during the growth of ZnO nanorods on stainless steel foil

Author:

Mufti N,Dewi A S P,Sanusi M I,Taufiq A,Hidayat A,Sunaryono

Abstract

Abstract This study aims to investigate the structural and morphology of ZnO nanorods in the variation of precursor ratio on stainless steel substrate and its piezoelectric nanogenerator performance. ZnO nanorods are grown on a stainless steel substrate that has been coated with ZnO as a seed layer by a modified hydrothermal method in the variation of molar ration between Zinc nitrate tetrahydrate (ZNT) and hexamethylenetetramine (HMT). X-ray diffraction (XRD) and scanning electron microscope (SEM) were performed for structural properties and morphology characterization. The performance of the piezoelectric nanogenerator was carried out by measuring voltage and current in applying an external force to the device. The ZnO-nanorods has a hexagonal wurtzite structure. The average length of ZnO-nanorods increased and the average diameter decreased by increasing ZNT/HMT ratio. The current and voltage of the piezoelectric nanogenerator increased with increasing by increasing the zinc nitrate ratio. These results indicate that the ZNT and HMT precursor ratio is playing an important role in the growth of ZnO nanorods that implicates the performance of the piezoelectric nanogenerator with stainless steel substrate.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3