Author:
Hernandez-Salazar C A,Endrino J L,Diaz F H,Calero C A,Zurita-Gotor M,V-Niño E D
Abstract
Abstract
Nanofluids, which are suspensions of metallic or ceramic nanoparticle fillers in a variety of liquids, are a new category of heat-transfer fluids. Owing to the changes in thermal conductivity caused by nanofillers, they have thermal properties that are superior to those of conventional fluids; this leads to a more efficient heat transfer, making them attractive for various industrial applications. Using numerical models to support in situ experiments is necessary to analyze nanofluids’ thermal properties and flow; creating a test ring has been suggested to describe the characteristics and behavior of fluids under controlled conditions. Modeling and computational analysis support such advances, which are essential for understanding and optimizing phenomena occurring during experimental tests; the modeling and computational analysis of a test rig designed to characterize a diphenyl oxide/biphenyl blend base fluid are presented in this research work. The test rig design included an integrated stainless-steel piping system with a flow-controlled pump and heat exchanger; the computational model considers the conjugate effects of fluid dynamics to facilitate the construction of test rigs.
Reference13 articles.
1. Review article: Fabrication of nanofluidic devices;Duan;Biomicrofluidics,2013
2. Estudo das propriedades reológicas de nanofluidos à base de etilenoglicol e óxido de grafeno;da Silva;Revista Matéria,2021
3. Synthesis and characterization of ZrO2/dH2O nanofluids using two-step techniques;Anandakumar;Malaysian J. Chem,2023
4. Neural network modeling of in situ fluid-filled pore size distributions in subsurface shale reservoirs under data constraints;Li;Neural Comput. Appl,2020
5. An experimental study on optimization of SiO2/water nanofluid flows in circular minichannels;Subasi;J. Therm. Anal. Calorim,2021