Laser ablation of silicon monoxide and titanium monoxide in liquid: formation of mixed colloidal dispersion with photocatalytic activity

Author:

Vála Lukáš,Vavruňková Veronika,Jandová Věra,Křenek Tomáš

Abstract

Abstract Silica–titania mixed oxides and composites have been extensively studied, whereas to the titanium monoxide (TiO) –silicon monoxide (SiO) counterparts has been devoted very little attention. Laser ablation of SiO and TiO in liquids is in according with literature completely unexplored. Here we report on Nd:YAG pulse laser ablation of SiO and TiO in ethanol which allows generation of SiO- and TiO-based nanoparticles and their agglomerates. Mixed SiO-TiO colloid has been prepared by simple mixing of ablatively prepared individual colloids in 1:1 volume ratio. Measurement of size distribution by Dynamic Light Scattering (DLS) determines sizes of 24.85 nm and 262.3 nm for SiO colloid, 494.8 nm for TiO colloid and 35.2 nm and 397.5 nm for mixed colloid. Zeta potential values suggest incipient instability for all measured systems. Morphology of the particles captured on Ta substrate by evaporation of ethanol was studied using Scanning Electron Microscopy (SEM). Round-shaped, oval, and sheet-like particles and their agglomerates have been observed. Raman spectroscopy of the mixed SiO-TiO colloid revealed multiphase structure consisting of anatase and/or rutile, crystalline and amorphous silicon and silica and crystalline and amorphous titanium silicide TiSi2. Formation of TiSi2 demonstrates unexpected low temperature disproportionation of SiO and TiO-based species and mutual reducing interactions. Catalytic activity of individual SiO and TiO colloids and of their mixture has been tested in terms of methylene blue (MB) degradation under the daylight. TiO-SiO mixture exhibits higher solar-light catalytic activity compared to individual colloids which could by explain by the presence of highly photocatalytic TiSi2. These results represent potential of SiO and TiO reducing interactions which are favorable for generation of photocatalytic materials for water remediation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3