Uncertainty quantification of wind turbine fatigue lifetime predictions through binning

Author:

Sadeghi N.,Noppe N.,Morato P. G.,Weijtjens W.,Devriendt C.

Abstract

Abstract Aging wind energy assets demand the development of methods able to effectively support informed decision-making. These needs have inspired the use of data-driven methodologies, which offer valuable insights to wind turbine owners and/or operators. Many approaches can be found in the literature for extrapolating fatigue damage measurements to estimate the lifetime of wind turbines. In some cases, resampling approaches are proposed to compute the confidence levels associated with the generated projections, yet a standardized framework has not been adopted. Most reported studies identify the relationship between short-term damage and long-term Environmental and Operational Conditions (EOCs) by mainly rendering mean lifetime predictions and their associated confidence levels, whereas additional predicted lifetime statistical information is usually overlooked. In this work, we showcase the importance of properly accounting for the variability in lifetime predictions, describe how to summarize binned damages using statistical estimators and investigate bootstrapping variants for computing the confidence levels in the generated damage estimators.

Publisher

IOP Publishing

Reference12 articles.

1. Fatigue load monitoring of offshore wind turbine support structures;Marsh,2016

2. Validated extrapolation of measured damage within an offshore wind farm using instrumented fleet leaders;Noppe;J. Phys. Conf.,2020

3. Efficient probabilistic analysis of offshore wind turbines based on time-domain simulations;Hübler,2019

4. Deterministic and probabilistic damage calculation of offshore wind turbines considering the low-frequency fatigue dynamics;Sadeghi,2023

5. Effects of finite sampling on fatigue damage estimation of wind turbine components: A statistical study;Mozafari;Wind. Eng.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3