Study of Flow Field Characteristics During the Impact of a High-pressure Gas Jet on a Bulk-loaded Liquid

Author:

Wang Jian,Jiang Kun,Cheng Shenshen,Wang Hao

Abstract

Abstract A visual experiment platform for high-pressure gas jet impacting the bulk-loaded liquid was designed and built in order to investigate the real law of the interaction between the high-pressure gas jet and the liquid medium during the liquid-balance launch of rocket launcher. The experiments of single-phase gas jet injection and the high-pressure gas jet at different temperatures impacting the bulk-loaded liquid were carried out, and the effects of gas temperature on the characteristics of the gas-liquid flow field have been revealed. The results show that the turbulent mixing between the high-pressure gas jet and the liquid medium leads to the appearance of pressure fluctuations in the gas chamber connected to the nozzle. The higher the gas temperature, the greater the amplitude of the pressure fluctuations. Under the impact of high-pressure gas jet, a gas cavity with an arc-shaped head is formed inside the bulk-loaded liquid. The higher the gas temperature, the faster and more unstable the development of the gas cavity and the flow field. The displacement equation of the gas cavity confirms to the first-order exponential decay function, and the error between the fitting value of the established mathematical model and the measured value is within 2%.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3