Numerical Investigation for the Laminar Flow Effects over Rough Surface

Author:

Sun Kangjie,Fan Shengbing,Liang Hongming

Abstract

Abstract In this paper, the heat transfer effect of rough surface in laminar flow is introduced by fully developed fields for solving the Navier–Stokes equations of incompressible flow in assuming two-dimension using the direction splitting method. Firstly, the algorithm of the incompressible Navier–Stokes equations with pressure correct is carried out. Secondly, the effects of pressure drop and heat transfer and are investigated and discussed in different rough surface elements which are configured with triangular and rectangular element. The Reynolds number, roughness element spacing, and roughness height are also considered as the factors which affect the heat transfer. The results indicate that the parallel present method reaches the stage of basically stable state rapidly and accurately. Compared with the smooth surface, the global performance of heat transfer is improved by the roughness surface since the pressure drop is lost. The effects of triangular element roughness surface on laminar flow and heat transfer are much stronger than rectangular element roughness surface when the spacing of the rough is changed. The flow over the triangular element roughness surface becomes stronger, which contributes to enhancement heat transfer meanwhile increase the pressure drop when the roughness height is higher.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3