Semantic Segmentation of Radar Detections using Convolutions on Point Clouds

Author:

Braun M.,Cennamo A.,Schoeler M.,Kollek K.,Kummert A.

Abstract

Abstract For autonomous driving, radar sensors provide superior reliability regardless of weather conditions as well as a significantly high detection range. State-of-the-art algorithms for environment perception based on radar scans build up on deep neural network architectures that can be costly in terms of memory and computation. By processing radar scans as point clouds, however, an increase in efficiency can be achieved in this respect. While Convolutional Neural Networks show superior performance on pattern recognition of regular data formats like images, the concept of convolutions is not yet fully established in the domain of radar detections represented as point clouds. The main challenge in convolving point clouds lies in their irregular and unordered data format and the associated permutation variance. Therefore, we apply a deep-learning based method introduced by Point CNN that weights and permutes grouped radar detections allowing the resulting permutation invariant cluster to be convolved. In addition, we further adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds. Finally, we show that our network outperforms state-of-the-art approaches that are based on Point Net++ on the task of semantic segmentation of radar point clouds.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference27 articles.

1. Advancements in Image Classification using Convolutional Neural Network;Sultana;CORR,2019

2. Fully Convolutional Networks for Semantic Segmentation;Long;CORR,2014

3. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation;Qi;CORR,2016

4. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space;Qi;CORR,2017

5. PointCNN;Li;CORR,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Method for Doppler Disambiguation;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

2. Deep Convection and the Solar Chromosphere;Solar Physics;2012-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3