Simulating Wind-Blown Nebulae from Single and Binary Massive Stars

Author:

Mackey Jonathan

Abstract

Abstract Winds from massive stars expand supersonically into their surroundings, creating dynamic and fascinating nebulae that can give us insight into physical processes in interstellar plasma, and into the evolutionary history of the stars. Around single stars, parsec-scale bubbles such as bow shocks and ring nebulae are formed, whereas in colliding-wind binary (CWB) systems the high wind density produces intense time- and space-dependent emission across the electromagnetic spectrum from radio to gamma-rays. This contribution summarizes some recent results from 3D MHD modelling of bow shocks around runaway stars such as ζ Oph, and of the wind-collision zone of the CWB systems WR140 and WR21a. A resolution study of 3D simulations of bow shocks shows that X-ray emission from the shocked wind is time-variable and that converged results can be obtained once the Kelvin-Helmholtz instability at the contact discontinuity is resolved. Simulations of the CWB system WR140 show that inverse-Compton cooling of the shocked plasma can trigger runaway cooling when the orbit is near periastron, producing strong compression and dynamical instabilities. This sharply reduces the hard-X-ray emission around periastron, in agreement with observations. Scaling tests of the simulation software pion are also presented for a model of the CWB system WR21a run on up to 8192 cores using the HPC system Karolina.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3