Layout Classification of Red Onion Disease on Onion Leaf Image Using Artificial Neural Network

Author:

Mubarokhah U N,Dijaya R,Maulana M I

Abstract

Abstract Shallots are one of the main ingredients that are often found throughout Indonesia. The optimal yield of onion plants is influenced by several factors, one of which is disease. The purpose of this study is to classify the image of leeks to identify onion diseases using Artificial Neural Network (ANN). Disease classification on leeks is leaf rot (anthracnose) and purple spots. The steps taken in the classification of leek disease are data input, pre-processing, feature extraction, machine learning. Several steps are carried out on the leek image, among others, improving image contrast, conversion of sRGB to LAB, segmentation using clustering, grayscale images, and binary images. After pre-processing, the next step is extracting features based on colour features and texture features. The colour features consist of Standard Deviation, Kurtosis, Mean, and Skewness. While the texture features consist of Contrast, Correlation, Energy, Entropy, Variance, and IDM. The end result of this system will show whether the leeks are included in the class of leaf rot (anthracnose) or purple spots or healthy leaves.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Management of major diseases and insect pests of onion and garlic: A comprehensive review;J. Plant Breed. Crop Sci.,2014

2. Gardener’s Manual;Hillock

3. Identifying Multiple Plant Diseases Using Digital Image Processing;Barbedo;Biosyst. Eng.,2016

4. Aplikasi Pengenalan Daun untuk Klasifikasi Tanaman dengan Metode Probabilistic Neural Network;Satia,2008

5. Machine vision-based automatic disease symptom detection of onion downy mildew;Kim;Comput. Electron. Agric.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative Hybrid Deep Learning Strategy for Detecting and Classifying White Rot in Onions;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3