Application of Plant Phenotype Extraction Using Virtual Data with Deep Learning

Author:

Chen Guifen,Huang Shuai,Cao Liying,Chen Hang,Wang Xi,Lu Yinghua

Abstract

Deep learning can enable image-based high-throughput phenotype analysis of plants. However, deep learning methods require large amounts of artificially annotated data. For application in plant phenotyping, the available data sets are usually small; it is expensive to generate new data and challenging to improve model accuracy with limited data. In this study, the L-system was used to generate virtual image data for training deep learning models. The precision (P), recall (R), and F-score (F) of the image segmentation model using a combination of virtual data and real data reached 0.95, 0.91, and 0.93, respectively; Mean Average Precision (mAP) and Intersection over Union (IoU) of the target detection model reached 0.96 and 0.92, respectively; the coefficient of determination (R2) and the standardized root mean square error evaluation of the leaf count model reached 0.94 and 0.93, respectively; all the results outperformed the results of training with only real data. Thus, we demonstrated that virtual data improves the effectiveness of the prediction accuracy of deep neural network models, and the findings of this study can provide technical support for high-throughput phenotype analysis.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Study on the Priority and Interaction of Food Security, Food Safety and Environmental Protection;Tang;Academics,2017

2. Crop Phenomics: Current Status and Perspectives[J];Zhao;Frontiers in Plant Science,2019

3. A Research about the Application of Information Technology in the Precision Agriculture:Taking the Operating System of Shanghai Agriculture Economy as an Example[C];Yao;International Conference on Computer and Computing Technologies in Agriculture,2011

4. Big Data of Plant Phenomics and Its Research Progress[J];Zhao;Journal of Agricultural Big Data,2019

5. Phenotyping thermal responses of yeasts and yeast-like microorganisms at the individual and population levels: proof-of-concept, development and application of an experimental framework to a plant pathogen[J];Boixel;Microbial Ecology,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning in Image-Based Plant Phenotyping;Annual Review of Plant Biology;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3