Molecular insights into the self-assembly of Janus nanoparticles obtained from coarse-grained molecular dynamics simulations

Author:

Wang Jiyu,Li Zhen

Abstract

Abstract Grafting polymeric chains onto surfaces of nanoparticles generates amphiphilic Janus nanoparticles (JNPs) that can self-assemble into a variety of well-ordered and/or functional nanostructures. The self-assembly structures of JNPs can be designed by the manipulation of grafting schemes, but only if the self-assembly rule can be well understood. By using coarse-grained molecular dynamics (CGMD) simulations, we investigated the self-assembly process and morphology of triblock JNPs with varying chain lengths, chain ratios, and grafting topology. The HTH type of JNPs which possesses a middle hydrophobic block and two terminal hydrophilic blocks tends to aggregate into film structures via a shoulder-by-shoulder packing mode. The THT (Hydrophobic-Hydrophilic-Hydrophobic) type of JNPs is likely to form string structures via a head-to-head packing mode. The self-assembled film structures and string structures can be further regulated by the hydrophilic-hydrophobic chain ratio and length, forming rigid flakes, vesicles, porous structures, and so forth. Based on the molecular insights revealed by the example models, some plausible rules and strategies for tuning the self-assembly of nanoparticles are discussed in this paper. They are expected to facilitate future studies on the application of chemical self-assembly in materials science.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3