Author:
Xian Xiaoyu,Tang Haichuan,Tian Yin,Liu Qi,Fan Yuming
Abstract
Abstract
This paper addresses electric motor fault diagnosis using supervised machine learning classification. A total of 15 distinct fault types are classified and multilabel strategies are used to classify concurrent faults. we explored, developed, and compared the performance of different types of binary (fault/non-fault), multi-class (fault type) and multi-label (single fault versus combination fault) classifiers. To evaluate the effectiveness of fault identification and classification, we used different supervised machine learning methods, including Random forest classification, support vector machine and neural network classification. Through experiment, we compared these methods over 4 classification regimes and finally summarize the most suitable machine learning algorithms for different aspects of health diagnosis in traction motors area.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献