A Clustering Routing Algorithm for Wireless Sensor Monitoring Network in Irrigation Area

Author:

Li Lianguo,Ren Kang,Fan Tanghuai,Shen Keyong,Hu Rongqun

Abstract

Abstract It is the basis for the implementation and scientific management decision of precision irrigation to accurately and comprehensively sense water and rainfall regime, soil moisture content and engineering conditions in irrigation areas and various environmental factors closely related to crop growth. In view of the characteristics of large monitoring range and scattered distribution of measuring points in the irrigation area, based on the analysis of the characteristics of the strip shape layout of the wireless sensor network at the water demand side of the irrigation area, and the limited battery energy and transmission distance under the condition of battery power supply, a clustering routing algorithm based on wireless sensor network for monitoring irrigation area is proposed (known simply as CRAIM algorithm). The formation of clusters, the selection of cluster heads, the routing process between clusters and the sink nodes are studied, and the CRAIM algorithm, EE-LEACH (energy-efficient LEACH) and MMH-LEACH (modified multi-hop LEACH) algorithm are simulated and compared respectively. Experimental results showed that, the new algorithm, CRAIM, has some advantages in the energy consumption of the network.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Research of precision agriculture WSN protocols[J];Yang;Chinese Journal on Internet of Things,2020

2. Research and simulation on E-RMAC protocol for wireless sensor networks in irrigation area[J];Wang;Yangtze River,2019

3. Optimized cluster-based dynamic energy-aware routing protocol for wireless sensor networks in agriculture precision[J];Qureshi;Journal of Sensors,2020

4. Clustering routing algorithm based on farmland wireless sensor network[J];Jiang;Transactions of the Chinese Society of Agricultural Engineering,2017

5. Low power communication scheme in wireless sensor network for real-time monitoring[J];Zhang;Chinese Journal of Scientific Instrument,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3