Integral Estimator with Kernel Approach for Estimating Nonparametric Regression Functions

Author:

Hidayat Rahmat,Ma’rufi ,Yuliani

Abstract

Abstract Derivatives are measurements of how a function change as the input value changes, or in general a derivative shows how one quantity changes due to a change in another quantity. The concept of universal or comprehensive function derivatives is widely used in various scientific fields. For example, in economics, people are interested in studying the condition of the derivative of an objective function as the result of an optimization problem. In this study, nonparametric procedures are used to estimate a function where the form of the function does not lead to a particular function model. Suppose we are given a nonparametric regression model where f is an unknown function. The main problem of regression analysis is to determine the form of estimation f. To determine the estimation of f, one approach that can be used is the integral estimator with the Gaussian Kernel approach. Furthermore, as an application, the Labour Force Participation Rate (y) data is used with the predictor variable, namely the Average Length of Schooling (x). By using the GCV (Generalized Cross Validation) method, the optimal bandwidth is obtained at h = 80 with a GCV value of 0.243 with an MSE value of 32.1864.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3