Author:
Sun Chenyang,Wang Yang,Deng Yanfei,Li Huafu,Guo Junqi
Abstract
Abstract
Vehicles and roads cooperate to perceive traffic targets, which can reduce the perception blind spots of vehicles and improve driving safety. In this paper, we proposes a vehicle re-identification method oriented to vehicle-road coordination. This method first designs a lightweight vehicle re-identification network based on ShufflenetV2 to solve the computational efficiency problem of vehicle-road coordination scenarios, which can efficiently complete vehicle feature extraction; then, due to the real-time requirements of scenario communication, an adaptive feature conversion mechanism is designed in combination with the LSH algorithm, which can make the re-identification module to dynamically perform binary bit feature conversion and adjust the dimension according to the communication channel state; finally, a loss function for the conversion of vehicle re-identification features is designed, which can greatly reduce the accuracy loss rate of converting floating-point features to bit features. Experiments show that our method can efficiently complete the information extraction and comparison of vehicle re-identification features in the vehicle-road coordination scenario, and can improve the perception efficiency of vehicle-road coordination while taking into account performance and bandwidth.
Subject
Computer Science Applications,History,Education
Reference15 articles.
1. Evaluation of overhead and in-ground vehicle detector technologies for traffic flow measurement;Klein;Journal of Testing and Evaluation,1997
2. Vehicle Reidentification with the Inductive Loop Signature Technology;Jeng,2013
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献