Research on False Data Injection Attack Detection of S mart Grid Based on Machine Learning

Author:

Tao Zhen,Zhan Weishu

Abstract

Abstract The safe and reliable operation of power systems is an important guarantee for the healthy development of the national economy. Industry and people’s lives are inseparable from electricity, so the safety and reliability of electricity supply is very important. The sudden interruption of power supply will not only bring serious economic losses, but also seriously affect people’s normal lives and even endanger social stability. False data injection attack (FDIAs) are a new type of power system network attack method. FDIAs are a new type of power system network attack method. It can successfully bypass the bad data detection mechanism, offset the power measurement data, and mislead the control center under extremely subtle conditions. Therefore, it poses a very serious threat to the stable operation of the power system. Therefore, this article first analyzes the principle of false data injection attacks, in order to provide a theoretical basis for subsequent attack detection. Then this paper constructs a detection method based on extreme learning from the perspective of optimizing learning efficiency. Based on the IEEE14-bus standard test system, the method is verified through simulation, which shows the feasibility of this method, which provides a direction for building a safe and stable smart grid.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. A Summary of Research on Network Attack in the Environment of Power Information Physics Fusion System [J];Tang;Automation of Electric Power Systems,2016

2. A Summary of Fraudulent Data Attack and Defense in Power System State Estimation [J];Zhu;Power System Technology,2016

3. Lessons from the Ukrainian incident: protection against false data injection attacks against the power grid [J];Zhao;Automation of Electric Power Systems,2016

4. Securing SCADA systems [J];Patel;Information Management & Computer Security,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3