Research on the Cooling Effect of Water Injection of the Deflector on Flame of the Vertical Launch Missile

Author:

Zhang Manman,Jiang Yi,Zhang Jingli,Lei Jing,Deng Yueguang

Abstract

Abstract The high-temperature gas generated by the missile launch will cause serious ablation to the launcher. In order to study the thermal protection of the launch device, a scheme of arranging vertical upward water spray pipes in the deflector is proposed, which realizes the thermal protection of the launcher by the vaporization and heat absorption principle of liquid water and the impact effect. Based on the Mixture multiphase flow model, coupled with the vaporization equation of liquid water and the component transport model, the cooling mechanism and effect of the proposed scheme are analyzed. Meanwhile, the numerical simulation of gas flow field under different water injection speed conditions is carried out, and the change law between different water injection speed and cooling effect is obtained. The results show that after the water sprayed by the pipes laid in the deflector, a water film will be formed on the surface of the deflector and the wall of the launch vehicle, which plays a role in the isolation of the high-temperature gas. The temperature of the launch device drops significantly. With the increase of water injection speed, the thickness of the water film formed on the surface of the deflector and the wall of the launch vehicle becomes larger, and the isolation effect on the gas becomes more obvious. When the water injection speed increases to 55m/s, the vaporization rate of liquid water in the direct impact area of the gas jet reaches the maximum, the heat absorption is the most at the same time, and the temperature in this area reaches the lowest level. The cooling effect of the water spray speed of 55m/s on the flow field is the best. This conclusion can provide a theoretical reference for the thermal protection design of missile launcher.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference20 articles.

1. Experimental study on the mean flow characteristics of a supersonic multiple jet configuration;Faheem;Aerospace Science and Technology,2021

2. Effects of bevelled nozzles on standoff shocks in supersonic impinging jets;Lim;Aerospace Science and Technology,2019

3. Water injection for rapid cooling of a flow of rocket exhaust gases;Geery,1969

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3