The Hybrid Ant Lion Optimization Flow Shop Scheduling Problem for Minimizing Completion Time

Author:

Widodo Dian Setiya,Utama Dana Marsetiya

Abstract

Abstract This article aims to develop the Ant Lion Optimization (ALO) algorithm for the Permutation Flow Shop Scheduling Problem (PFSP). We use the objective function to minimize completion time. We propose the Hybrid Ant Lion Optimization (HALO) algorithm to minimize completion time in PFSP. We offer one of the total search agents on HALO using the NEH algorithm. Determination of the position of the search agent using a Large Rating Value (LRV). How it works from LRV is sorting from the largest value to the value. To improve the solution for each iteration, we also use swap, flip, and slide exchange procedures. The performance of the HALO algorithm is measured by Efficiency Index Perscentage (EIP). HALO algorithm will be compared with several other algorithms, namely ALO algorithm and Hybrid Whale Optimization Algorithm (HWOA). We conducted numerical experiments with Ten variations of experimental data are used to show the performance of the HALO algorithm. Based on numerical experiments, the HALO algorithm is useful for minimizing completion time.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference30 articles.

1. A New Hybrid Metaheuristics Algorithm for Minimizing Energy Consumption in the Flow Shop Scheduling Problem;Utama;International Journal of Technology,2019

2. An Effective Hybrid Sine Cosine Algorithm to Minimize Carbon Emission on Flow-shop Scheduling Sequence Dependent Setup;Utama;2019,2019

3. Algoritma ant-lion optimizer untuk meminimasi emisi karbon pada penjadwalan flow shop dependent sequence set-up;Utama;2019,2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3