Improvement of One-Dimensional Fisherface Algorithm to extract the Features (Case study: Face Recognition)

Author:

Muntasa ,Yusuf M,Syarief M,Yulmaini ,Sari P P

Abstract

Abstract Recently, computer vision research results have supported many sectors to assist and solve problems. One of branch of the computer vision fields is biometric system. Many modalities have been implemented to depict the human characteristics. Face is one of the modalities that has been employed to recognize the human. A crucial problem of the face recognition is high dimensionality. The problem would impact on the computational performance, and even it could cause the process failure. Feature extraction is the solution to reduce the dimensionality. However, many cases have shown that feature extraction could fail as singularity problem. In this research, we proposed the improvement of the fisherface algorithm to solve the singularity problem. We have modified the singularity covariance matrix so that the matrix can be further handled and processed. The purpose of the paper is to improve the performance of the fisherface algorithm. We have verified our proposed algorithm by using the Olivetty Research Laboratory face image. We applied 7-cross validations to evaluate our proposed algorithm, the evaluation results achieved more than 92% accuracy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3