Robot Orientation Estimation Based on Single-Frame of Fish-eye Image

Author:

Fuad Muhammad,Agustinah Trihastuti,Purwanto Djoko,Sardjono Tri Arief,Dikairono Rudy

Abstract

Abstract In order to develop the steering control for collision avoidance behaviour, robot must be able to determine its heading orientation with respect to environment. Orientation can be measured by dedicated sensors or through visual features perception. In vision-based orientation estimation problem, most of approaches are making use of a matching process between pair of frames. This paper proposes a method of estimating robot’s heading orientation by using only a single-frame of fish-eye image. CIE-LAB colour space is applied to handle colour and illumination intensity change. Straight line segments are extracted from thresholded CIE-LAB image take advantage of Progressive Probabilistic Hough Transform. Angle of the corresponding line segment is measured using combination of Law of Cosines and quadrant principle. Heading orientation in yaw angle is estimated by implementing voting mechanism based on region grouping and length of perpendicular line. Some experiments are made in robot soccer field environment to compare orientation estimation system against IMU’s measurement. Discussion about the performance and limitation of the system are included in this paper.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer;Kim;Computer Graphics and Image Processing,2002

2. A new threat assessment measure for collision avoidance systems;Noto,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3