Parametric Analysis on Three-Points Bending Test of Typical Skin-Stringer Structure

Author:

Wang Zhe,Chen Xiangming,Zou Peng,Li Xinxiang,Liang Qingxianglong,Yang Junchao

Abstract

Abstract Stringer-skin debonding was one of the most important failure models in stiffened composite panels. In this paper, three-points bending tests were performed on representative stringer-skin structure of composite wing to simulate the flange-skin interface behavior and to obtain the failure mode and failure load. A 3D finite element model was built by using ABAQUS software to simulate interface failure with cohesive zone model. The numerical results agree well with test data, which validate the rationality of the finite element model. Hence the influence of factors during manufacture, installation and test in three-points bending tests, such as off-axis displacement, inclination loading and span, is studied. Results show that the initial debonding load and failure load of specimen decrease as the displacement from loading axis to central axis increases. The load of specimen decreases as the span increases. The influence of inclination loading is insignificant when the inclination angle is less than 6 degree. However, the initial debonding load and failure load of specimen decreases in varying degrees as the inclination loads increases. Furthermore, the initial debonding load decreases rapidly.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Nonlinear postbuckling behavior of composite laminated plates[J];Chen;Journal of Wuhan University of Science and Technology(Natural Science Edition),2005

2. Multi-level experimental and numerical analysis of composite stiffener debonding. part 1:non-specific specimen level[J];Jean;Composite Structures,2009

3. Buckling and postbuckling behavior of stiffened composite panels loaded in compression[J];Lee;AIAA Journal,1997

4. Buckling and postbuckling of stringer stiffened fibre composite curved panels-tests and computations[J];Zimmermann;Composite Structures,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3