Gold nanoparticles fabricated by the electrical wire explosion technique, deposited on a porous silicon as an active substrate for surface-enhanced Raman scattering (SERS)

Author:

Jaleel Ansam F,Wasfi Ahmed S

Abstract

Abstract This study aims to improve the surface-enhanced Raman scattering (SERS) using gold nanoparticles prepared by the wire explosion technique and deposited on an etched silicon substrate. This spectral technique is highly dependent upon physicochemical properties of the substrate material, to detect very low concentrations of the toxic materials. The morphological and structural features of the prepared gold nanoparticles (AuNPs) have been investigated by the field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The FE-SEM images illustrated that the deposited AuNPs have a non-uniform spherical shape with a rough surface and there were nanogaps between them acting as hotspots at the surface. While the X-ray diffraction pattern indicated the existence of the (111) plane which confirmed the crystalline nature of the AuNPs. Rh6G dye was used as a probe material to examine the performance of these nanoparticles as a SERS substrate. The Raman scattering spectrum of the rhodamine RH6G dye enhanced greatly due to the existence of these nanoparticles, where the enhancement factor (EF) was 2.23×106 when using a deposited AuNPs of concentration 13.46 ppm which is equal to 3×10-5 M, and a reasonable detection limit for a low dye concentration of 10-14M.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3