New Comparative Study of High-Sensitivity H2Gas Sensors at Room Temperature Based on ZnO NWs Grown on Si and PS/Si Substrates without Catalyst by Wet Thermal Evaporation Method

Author:

Abdulgafour H. I.,Hassan Thamer A.A.,Yam F.K.

Abstract

Abstract A novel approach for growing high-quality ZnOnano-structures with no catalyst using an inexpensive technique that is called wet thermal evaporation has been investigated for gas sensor applications. For a novel comparative investigation of H2 gas sensors, large regions regarding the well-aligned coral reef-like ZnOnano-structures on the porous Si (PS) and flower-like nano-rods on Silicon were successfully utilized. In the presented study, a Pd/ZnO/Pd metal-semiconductor-metal was efficiently created for H2 gas sensor device employing high-quality ZnOnano-structures that are grown on a variety of the substrates. At room temperature, the sensitivity related to ZnO/PS and ZnO/Si is evaluated at various flow rate values (25sccm, 50sccm, 100sccm, and 150sccm) of 2% H2 gas. The I-V characteristics revealed that ZnO/Si has a larger hydrogen gas barrier height than ZnO/PS. At room temperature, the ZnO/Si sensitivity was about 105% and 190% for ZnO/PS at 150sccm flow rate. The sensors’ sensitivity and optimum operating temperature for ZnO/PS at 150sccm of H2 gas are 350% (at 100 Celsius), which is higher compared to double the maximal sensitivity with regard to ZnO/Si device at a temperature of 150 Celsius. This research concluded that because ZnO/PS has a large specific area, it has a greater possibility of reacting with gases and increasing sensitivity at the temperature of theroom.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3