Author:
Kozyrev N V,Kirstein E,Namozov B R,Kusrayev Yu G,Zhukov E A,Sedova I V,Yakovlev D R,Bayer M
Abstract
Abstract
Self-organized disk-shaped quantum dots of CdSe embedded in diluted magnetic ZnMnSe barrier were studied by means of pump-probe time-resolved Kerr rotation (TRKR) technique at low temperature T = 7 K. In absence of the external magnetic field TRKR signal exhibits long-living spin dynamics with the decay time exceeding the period between laser pulses. Such spin dynamics is not typical for diluted magnetic semiconductors and nano-structures based on them and could be a trace of a bound magnetic polaron. Resonant spin amplification measured in transversal magnetic field up to 1 T shows the only one peak near B = 0. In B = 1 T the long-living non-precessing signal practically vanishes, while the precessing one appears with the Larmor frequency corresponding to the Mn2+ ions’ net spin precession around the magnetic field. It was found that the signal consists of three components with slightly different precession frequencies that could be due to the fine structure of the manganese spin sublevels occurring because of a stress in quantum dots.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献