Spherical model and quantum phase transitions

Author:

Udodov V N

Abstract

Abstract The spherical Berlin-Katz model is considered in the framework of the epsilon expansion in one-dimensional and two-dimensional space. For the two-dimensional and threedimensional cases in this model, an exact solution was previously obtained in the presence of a field, and for the two-dimensional case the critical temperature is zero, that is, a “quantum” phase transition is observed. On the other hand, the epsilon expansion of critical exponents with an arbitrary number of order parameter components is known. This approach is consistent with the scaling paradigm. Some critical exponents are found for the spherical model in one-and twodimensional space in accordance with the generalized scaling paradigm and the ideas of quantum phase transitions. A new formula is proposed for the critical heat capacity exponent, which depends on the dynamic index z, at a critical temperature equal to zero. An expression is proposed for the order of phase transition with a change in temperature (developing the approach of R. Baxter), which also depends on the z index. An interpolation formula is presented for the effective dimension of space, which is valid for both a positive critical temperature and a critical temperature equal to zero. This formula is general. Transitions with a change in the field in a spherical model at absolute zero are also considered.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Contribution to the theory of second-order phase transitions at low temperatures;Rechester;Soviet physics JETP,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3