Investigation of the rupture of a synthetic tape within the framework of the percolation theory

Author:

Kozlitin R A,Udodov V N

Abstract

Abstract Within the framework of the percolation theory (bond problem), a new model of breaking a complex synthetic tape is proposed as a continuous-type phase transition when the state jump is zero. The percolation threshold and accompanying characteristics are calculated for the model of rupture of a synthetic reinforced tape when flowing along the first and second neighbours. The knots of the tape form a strip of a square lattice, the width of which is fixed. All nodes are intact and cannot be damaged, links (tape threads) can be intact and broken (blocked). The dependences of the percolation threshold in the bond problem and the relative deviation of the threshold from the ribbon length are calculated. It is proved that for the simplest model of one-dimensional percolation with percolation along the nearest neighbours (the problem of nodes), the percolation threshold in the thermodynamic limit is equal to unity. It is shown that, with an accuracy of 10%, the percolation threshold for a sufficiently long ribbon is equal to unity. This indicates that the system is quasi-one-dimensional. Thus, using the method of computer simulation, the percolation threshold, root-mean-square and relative threshold deviations were calculated. The critical susceptibility index was also calculated. In contrast to the usual percolation problem, in the proposed model it makes sense to consider only the region above the percolation threshold. The proposed model can be generalized to the case when nodes are also damaged (blocked), then we come to a mixed percolation model, which is supposed to be considered in the future.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3