Study on NO2 gas sensitivity of metal phthalocyanine enhanced by graphene quantum dots

Author:

Lu Zhizhong,Jiang Menglin,Huang Jieshi,Zhou Xinlei,Li Kejie,Zheng Yue,Jiang Wenkai,Zhang Tao,Yan Hangbing,Xia Huan

Abstract

Traditional semiconductor gas sensors mainly based on metal oxides have some problems such as high working temperature, high energy consumption, low sensitivity, poor anti-interference ability and poor selectivity. Organic semiconductors, represented by metal phthalocyanine (MPc), are becoming the choice of new semiconductor gas sensors because of their advantages of abundant raw materials, low cost, simple process, strong compatibility and ability to work at room temperature. In this study, metal phthalocyanine (molecular diameter of about 1.3 nm) and graphene quantum dots (diameter distribution of 1-3 nm) are similar in size, which facilitates the construction of conjugated plane structure to achieve rapid charge transfer within the material, thus realizing the ultra-sensitive response of the sensor to specific gas molecules at room temperature. In this work, ethylenediamine was used as adhesive to bond tetracarboxylic metal phthalocyanine (MPc-COOH) and graphene quantum dots (GQDs) to form a new composite material MPc-GQD. The response value of the sensor to 100 ppm NO2 gas can reach 19.8 in 100 s at room temperature, and it has good recovery and repeatability under the premise of laser-assisted recovery. The results provide a new idea for the development of room temperature gas sensors using organic semiconductors and carbon nanomaterials.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference19 articles.

1. Detection of nitrogen dioxide with tunable multimode blue diode Lasers;Abdulaziz;Applied Physics B.,2021

2. Measurement of low concentrations of NO2 gas by differential optical absorption spectroscopy method;AbdulAziz;Measurement,2019

3. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection;Long;Advanced Functional Materials,2016

4. Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas;Hoa;Chemistry-A European Journal,2011

5. Electrochemical sensors;Bakker;Analytical Chemistry,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3