Research of soil compaction process in area of contact with a wheel mover

Author:

Kokieva G E,Troyanovskaya I P,Orekhovskaya A A,Kalimullin M N,Dzjasheev A-M S,Ivanov A A,Sokolova V A

Abstract

Abstract Practice of operating heavy wheeled machines (T-150K, K-700, K-701) and experimental data show that even if the average pressure of a wheel on soil is maintained, degree of its compaction increases. To explain this phenomenon, in our opinion, it is necessary to develop a mathematical model of interaction process of a deformable pneumatic with an elastic-plastic medium, which is considered to be soil subject to modern processing. Working parts of agricultural machines process a wide variety of materials, number of which is increasing, in addition, method of processing the same material is often changed in an effort to improve agricultural technology. This forces us to create new mechanisms for agriculture that were known before. Use of replaceable toothed working parts on flat-cut cultivators helps to reduce energy consumption and improve quality of non-moldboard soil cultivation. Article proposes a method for mathematical description of distribution of machine load over contact surface of a wheeled mover with deformable soil. At the same time, several assumptions and conditions were adopted, namely: volume of skeletal part of deformable soil element remains constant, independent of deformation; contact surface is a curve of two radii - in the load zone (Rl) and in the unloading zone (Ru), tire operating in driven mode has no skids; deformable soil is uniform in depth; wheel load is constant; tire radial stiffness along tread portion width is also constant in magnitude and direction; lateral pressure along deformable soil depth is small and is not taken into account in calculation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Substantiation of parameters of active needle rotary discs for sowing on stubble background [For selection plots];Andreeva;Technics in agriculture,2013

2. Selection and justification ofthe geometric parameters of the profile-forming roller;Molodchenkov;Vestnik NGIEI,2018

3. Experimental studies of the interaction of the working parts of the needle disc with plant residues;Kem;Bulletin of Omsk State University,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3