The rolling simulation for cold work metal hardening

Author:

Urazov V,Danilov A D,Yu Gusev K,Yu Gusev P,Meshkov D N

Abstract

Abstract This article describes the results of a calculation and experimental analysis of destructive physical phenomena that appear in critical sections of industrial and power-related equipment, and lead to occurrence of various operational damages. It was shown that pipeline welded connections are the sections most prone to crack development, therefore the traditional strength calculations need to be combined with fracture mechanics criteria and thorough materials analysis of flawing and structural imperfection. The cold work hardening technique was proposed as a solution for the problem of critical sections performance property restoration. The technique uses surface plastic deformation phenomenon to change the material’s throughthickness stress distribution. In order to optimise surface hardening for welded connections prone to defect formation, we proposed a simulation for analysing an actual pipeline sections load. To assess the applicability of the simulation results, the cold work hardening technique was developed and introduced using a full-scale test sample for damaged areas of welded connections in ø426×40 vent pipes at Novovoronezh NPP Unit No.5.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Results of a preoperational inspection at unit N° 1 of Novovoronezh NPP II;Urazov;News Of Higher Educational Institutions, Nuclear Energy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3