Fabrication and Characterization of PSf/GO-SiO2 Membranes as Filtration of Detergent Contaminated Water

Author:

Anis A,Munasir M

Abstract

Abstract The increasing use of detergents in daily life can cause environmental pollution. So, to solve the problem, membrane technology is suitable to reduce various pollution from water. Graphene Oxide (GO) and SiO2 are very much of concern and have been studied in recent years because they can change many characteristics of materials and can expand the range of applications in membrane manufacturing. So, this study aims to analyze the results of PSf/GO-SiO2 membrane fabrication by phase inversion method and analyze the results of PSf/GO-SiO2 membrane performance as detergent polluted water filtration. In GO synthesis using Hummer’s method, GO-SiO2 composite synthesis using Tetraethylorthosilicate (TEOS) in-situ hydrolysis method, and PSf/GO-SiO2 membrane fabrication using the phase inversion method. So, it is concluded that the PSf/GO-SiO2 membrane fabrication has been successfully carried out, as indicated by the SEM results; with the increasing presence of SiO2, the membrane pore size is getting bigger. For the performance of the PSf/GO-SiO2 membrane with UV-Vis test, the results showed that the flux value of the PSf; PSf/GO and PSf/GO-SiO2 (0.6) membranes was 119.58 L/m2.h; 140.35 L/m2.h and 157.79 L/m2.h respectively. In line with the results of the membrane rejection values are 95.22%, 97.68%, and 98.55%, respectively. The membrane with the best performance in the filtration of detergent-polluted water is the PSf/GO-SiO2 (0.6) membrane. The presence of SiO2 in the membrane causes a higher flux value because the larger membrane pore size influences it, so the PSf/GO-SiO2 membrane can be used to filtrate detergent-contaminated water.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3