Numerical Solution of SEIR Model of The MERS-CoV Disease using Homotopy Analysis Method

Author:

Rangkuti YM.,Firmansyah ,Ginting E.,Landong A.

Abstract

Abstract The spread of MERS-Cov disease which was modelled by Susceptible Exposed Infected Recovered (SEIR) model has been solved by a reliable method so-called Homotopy Analysis Method (HAM). The solution using HAM is done by constructing the zero order deformation equation of SEIR model into a high order equation and selecting the convergence control (ℏ). The closeness of HAM and Fourth order Runge Kutta (RK4) solutions and also the existence of residual error showa benchmark of the success of the HAM. The result shows that the minimum errors of the closeness of HAM and fourth order Runge Kutta (RK4) solutions are 10−17 while the minimum residual error of HAM solutions are 10−18. Therefore, HAM has successfully obtained solution of SEIR model approximately. Overall, HAM can be an alternative method for solving more complex models.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3