A comparative investigation between rule- and inverse model-based fault detection and diagnostics for HVAC control systems

Author:

Darwazeh D,Gunay B,Rizvi F,Lowcay D,Shillinglaw S

Abstract

Abstract Fault detection and diagnostics (FDD) tools provide valuable information regarding system faults and deviation from expected operation. Most existing FDD tools apply rule-based fault detection algorithms that generate an alarm when a rule is met; however, these tools cannot evaluate the overall performance of a system. Inverse-model-based FDD algorithms can be deployed to complement the fault alarms triggered by rule-based building energy management systems (BEMS). This paper examines the faults detected by rule- and inverse model-based algorithms used to detect faults in multiple zone variable air volume air handling unit systems. The capability of the rule- and inverse model-based algorithms in detecting and diagnosing faults is demonstrated through illustrative examples using data from three commercial buildings in New Brunswick, Canada. The results show that inverse model-based algorithms could diagnose faults that were not detected by the rule-based FDD algorithms implemented in a commercially available BEMS tool.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference11 articles.

1. Comparative analysis of the AHU InFO fault detection and diagnostic expert tool for AHUs with APAR;Bruton;Energy Efficiency,2015

2. An expert rule set for fault detection in air-handling units/discussion;House;Ashrae Transactions,2001

3. A rule-based fault detection method for air handling units;Schein;Energy and buildings,2006

4. Building energy doctors: An SPC and Kalman filter-based method for system-level fault detection in HVAC systems;Sun;IEEE Transactions on Automation Science and Engineering,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3