Maximum Power Point Tracking of PV Systems Based On a Novel Adaptive Variable Step Size INC MPPT Method

Author:

WeiFeng You,Yan Cui

Abstract

Abstract In the future solar energy will become a very important green energy. Maximum power point (MPP) tracking (MPPT) technology is widely used in solar photovoltaic (PV) systems to generate peak power for PV arrays that depend on solar irradiation and ambient temperature. Literature[1] shows that the maximum power point tracking (MPPT) technology can improve the efficiency of photoelectric conversion by more than 20% and the economic cost is relatively low. Based on PROTUES, the output characteristics of PV arrays under different shadow conditions are simulated and the rule between local maximum power point and open circuit voltage is obtained. Among all the MPPT strategies, the incremental conductance (INC) algorithm and perturb and observe (P&O) algorithm are widely used due to the high tracking accuracy at steady state and easy implementation.In this paper, a novel adaptive variable step size INC MPPT method is proposed according to the above rule. This algorithm not only has the advantage of INC, but also can automatically adjust the step size to track the maximum power point of PV arrays. Compared with the adaptive perturb and observe (P&O) algorithm, the proposed approach can effectively improve the MPPT steady-state response speed and accuracy simultaneously. The theoretical analysis and design principle of the proposed algorithm are presented in this paper. The simulation results show that the algorithm can accurately track the maximum power point (MPP) with shadow. The average tracking time is only 0.13 seconds, and the power tracking efficiency reaches 98%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. General methods to improve the efficiency of photovoltaic power generation systems [J];Jinfeng;Science and Technology Innovation Herald,2015

2. Three-phase photovoltaic grid-connected inverter based on MPPT with optimal gradient method [J];Eryong;Power Electronics,2006

3. Overview of common photovoltaic array topology reconfiguration methods [J];Kun;Journal of Mechanical & Electrical Engineering,2014

4. Application of Power Electronics Technology in Microgrid [J];Shengli;Electrotechnical Application,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3