Time series forecasting method based on frequent pattern mining

Author:

Qu Jintao,Cui Xiaohui,Meng Xiuyang,Zheng Senyang

Abstract

Abstract Pattern Sequence-based Forecasting (PSF) is an effective method for time series prediction. However, the accuracy of this method depends on the selection of parameters such as the length of the pattern sequence and the number of clusters. In diverse time series data sets, these parameters are often priori unknown. This paper innovatively introduces a pattern mining method before the PSF pattern clustering to guide the clustering process and realize the automation of initial parameter selection. Experimental results show that the method proposed in this paper effectively eliminates the uncertainty of PSF caused by the selection of initial parameters. Compared with the original model, it improves the efficiency while ensuring the advantage of prediction accuracy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

1. Selecting maximally informative genes;Androulakis;Computers & chemical engineering,2005

2. Frequent motion pattern extraction for motion recognition in real-time human proxy;Arita,2005

3. Finding motifs in time series;Lonardi,2002

4. Probabilistic discovery of time series motifs;Chiu,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time Series Analysis and Forecasting: Application of Financial Crisis Early Warning;2023 5th International Conference on Decision Science & Management (ICDSM);2023-03-03

2. Research on Financial Early Warning Based on Combination Forecasting Model;Sustainability;2022-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3