Arcing fault diagnosis using enhanced cross-correlation technique

Author:

Amirruddin Melaty,Adzman Mohd Rafi,Affendi Nur Adyani Mohd,Idris Muhd Hafizi,Abd Halim Syahirah

Abstract

Abstract This study explored the potential use of cross-correlation as a technique for detecting arcing faults in a power system distribution network. The cross-correlation technique was employed to investigate the effect of each antenna placement as a detection device, time difference of arrival (TDOA), time delay, and correlation magnitude of arcing signals detected during on-line arcing fault measurement. The arcing fault was detected using four antennas that had been set up around the arc source point in a high voltage (HV) laboratory. The measurements were taken using a digital oscilloscope. For precise results, the Discrete Wavelet Transform (DWT) denoising technique combined with cross-correlation (CC) technique were applied using MATLAB software to identify the arcing signals detected in order to diagnose the differentiation between noisy and real arcing fault signals. Further assessment was carried out by performing a cross-correlation technique on the real arcing signals obtained to find the similarities and arrival time’s delay between single arcing signals’ placement. The outcome shows that all measurements including the time difference of arrival (TDOA), correlation magnitude, time delay, and antennas’ placement towards the arcing source point are valuable in determining the arcing signals detected precisely.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Aspects of arc-flash protection and prediction;Kumpulainen;Electr. Power Syst. Res.,2014

2. Exposed to the Arc Flash Hazard;Lang;IEEE Trans. Ind. Appl.,2015

3. The Truth about Arc Detection;Braverman;EE: Evaluation Engineering,2006

4. Arcing fault diagnosis using first peak arrival of em radiation signal;Amirruddin;J. Phys. Conf. Ser.,2021

5. Series Arc Fault Detection Using Novel Signal Processing Technique;Atharparvez;Electr. Contacts, Proc. Annu. Holm Conf. Electr. Contacts,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3