Scintillation Effects of Ka-band Frequency on Satellite Application

Author:

Badron Khairayu,Mujei Aida Syafiqah,Rahim Nadirah Abdul,Ismail Ahmad Fadzil,Ahmad Yasser Asrul

Abstract

Abstract The satellite communication system is currently congested because of the high demand for data transmission. The Ka-band is a greater range band that can help to solve the issue. However, Ka-band is severely impacted by scintillation at its high frequency. One of the transmitting impairments is scintillation, a sudden fluctuation in the amplitude of the signal and electromagnetic waves, that generates signal attenuation and degradation. In the presence of rain and even under clear skies, scintillation affects the output of Ka-Band. The scintillation prediction model has mostly been evaluated and applied in countries with four-season climates. The objective of this study was to evaluate the Ka-band scintillation data and compare the findings with other existing scintillation models to validate the outcome. For data of one year (2016) at the Ka-Band frequency of 20.2 GHz, this research focused on analysing the tropospheric scintillation from the satellite data. The experimental data from MEASAT 5 were analysed to see the effect of tropospheric scintillation under clear-sky conditions using a dish antenna with a diameter of 7.3 metres and an elevation angle of 68.8°. The satellite signal measurement samples were gathered and filtered using MATLAB to provide clear-sky scintillation. Next, the obtained raw data was converted into readable data. The data was then plotted, and the experimental data was compared to the other models of scintillation. It was essential to evaluate the outcome of the comparison and address which model was most appropriate for tropical climates. Moreover, this project’s cutoff frequency was 0.023Hz, which was computed from the average cut-off frequencies of 12 months in 2016.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3