Fabrication and Strength Assessment of Composite Corrugated Expansion Tube

Author:

Liu J.W.,Kam T.Y.

Abstract

Abstract A technique is proposed to develop a composite corrugated expansion tube which can achieve a prescribed axial extension when subjected to an internal pressure. The composite corrugated expansion tube was fabricated using annular carbon fabric/PU sheets via the vacuum-assisted resin transfer process. In forming the tube shape, the edges of each annular fabric/PU sheet are adhesively bound to the other two similar sheets at the outer and inner edges, respectively. A finite element model of the corrugated expansion tube is established using the shell elements of the finite element code ANSYS. To illustrate the applications of the proposed technique, the corrugated expansion tube that can sustain internal pressure of 82.73 MPa is developed and tested to verify the accuracy of the finite element model. It has been shown that compressive stresses are induced at the adhesive layers that are located at the outer edges of the corrugated expansion tube. The occurrence of such compressive stresses at the outer edge adhesive layers can increase the failure pressure of the corrugated expansion tube. The failure strength of the composite sheet dominates the incipient failure pressure of the tube. This type of failure mode makes the expansion tube design feasible for practical applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Dynamic stability and natural frequency of composite corrugated bellows expansion ioint;Rao;Applied Mechanics and Materials,2013

2. Stability of corrugated expansion bellows: shell and rod models;Zinovieva;Acta Mech,2019

3. Instability of bellows subjected to internal pressure;Haringx;Philips Res. Rep.,1952

4. Theoretical and experimental studies of the stress–strain state of expansion bellows as elastic shells;Belyaev;St. Petersburg Polytech. Univ. J. Phys. Math.,2017

5. Design And Thermal Analysis Of Thermal Expansion Joint In Industrial Application;Khunt;IJIRST –International Journal for Innovative Research in Science & Technology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3