Author:
Priambodo A S,Arifin F,Nasuha A,Winursito A
Abstract
Abstract
The fundamental aim of this research is to develop a face detection system for a quadcopter in order to follow the face object. This research has two main stages, namely the face detection stage and the position control system. The face detection algorithm used in this research is the haar cascade method which is run using the python and OpenCV programming languages. The algorithm worked well, getting around 16fps on a low spec computer without a GPU unit. The results of the face detection algorithm are proven to be able to recognize faces from the camera installed on the DJI Tello mini drone. The mini drone was chosen because it is small and light, so it is harmless, and testing can be carried out indoors. Besides, the DJI Tello can be programmed easily using the python programming language. The drone’s position is then compared with the set point in the middle of the image to obtain errors so that control signals can be calculated for up/down, forward/backward, and right/left movements. From the testing results, the response speed that occurs in the right/left and up/down movements is less than 2 seconds, while for the forward/backward movement, it is less than 3 seconds.
Subject
General Physics and Astronomy
Reference10 articles.
1. Additive manufacturing aimed to soft robots fabrication: A review;Stano,2020
2. Fully actuated multirotor UAVs: A literature review;Rashad;IEEE Robotics & Automation Magazine,2020
3. Design and performance analyses of a fixed wing battery VTOL UAV;Dündar;Engineering Science and Technology, an International Journal,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献