Theoretical electronic structure with rovibrational and dipole moment calculation of SiN Molecule

Author:

El-Kork Nayla,Mahmoud Salman,Bechelany Mikhael,Miele Philippe,Korek Mahmoud

Abstract

Abstract Atomic and molecular data are at the origin of the atmospheres of planetary and stellar objects discoveries. Based on the laboratory astrophysics and the computational molecular spectroscopy, the interpretation of this data can give the chemical compositions and temperatures of these astrophysical systems. The detection and the identification of the SiN radical in the interstellar medium has drawn the attention to the gas phase chemistry and the evidence of a link between the interstellar chemistry of silicon and that of nitrogen. The quantum chemistry methods used to predict the spectroscopic properties of the SiN molecule can be calibrated with some available experimental results. In order to obtain reliable theoretical data that may help in the interpretation of interstellar or laboratory spectra concerning the SiN molecule, we performed theoretical calculation of 31 low-lying electronic state, below 66000 cm−1, of the molecule SiN by using the Complete Active Space Self Consistent Field (CASSCF) method followed by the Multi Reference Configuration Interaction with Davidson correction MRCI+Q. The potential energy along with the dipole moment curves of these states have been calculated along with the spectroscopic constants Re, ωe, Be, and Te. The Rotation-vibration lines for the considered electronic states of SiN molecule were obtained by direct solution of the nuclear motion Schrödinger equation using the canonical approach with program Rovib-1. By comparing our investigated values of the calculated vibrational energy Ev, the rotational constant Bv and the turning points Rmin and Rmax. with those available in literature shows a very good agreement. To the best of our knowledge nine new electronic states have been studied here for the first time that have not been observed yet.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3