First-principles study of Na insertion in V2O5 for sodium-ion-based battery cathode

Author:

Amri A H,Azhar A,Cahaya A B,Suprayoga E,Majidi M A

Abstract

Abstract Sodium-ion batteries are a promising alternative in energy storage due to the abundant availability of Na ions. The overall battery performance may be affected by all the battery components, including the choice of the cathode material. This study focuses on vanadium pentoxide (V2O5) as the cathode material. V2O5 has the potential as the cathode for sodium-ion batteries. In this study, we compute the potential within the density functional theory using self-consistent field and structural optimization methods. In the intercalation process of Na ions, the addition of Na ions follows the chemical formula of Na x V2O5 with the value of x (0 ≤ x ≤ 1) representing the number of Na ions at the V2O5 cathode. We investigate the structure’s stability by calculating the formation energy and inspecting the crystal lattice’s deformation at the cathode under the variation of the number of Na+ ions. From our study, the structure NaV2O5 has a theoretical optimal capacity of 147 mAh/g and an open-circuit voltage of 3.5 V. These specifications are promising as a cathode in sodium-ion batteries even though the capacity is not as good as in lithium-ion batteries. It corresponds with the atomic size and mass of Na+ that causes deformation of the structure.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference23 articles.

1. Yoshio Nishi – Power Player - Features;Flavell-While,2011

2. entering the decade of electric drive?,2020

3. The weekend read: Sodium-ion batteries go mainstream;Maisch,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3