Simulation study on bubble motion in capillaries based on lattice boltzmann method

Author:

Wang Xinyu,Li Ruosong,Li Hanjun,Xu Yuanqing

Abstract

Abstract The lattice Boltzmann method with mesoscopic properties can conveniently describe the interaction of multiphase molecules and has wide application prospects in the field of multiphase flow. In this paper, the improved Shan-Chen pseudo-potential multiphase model in lattice Boltzmann method was used to simulate the process of bubble passing through stenotic capillaries during the pathogenesis of decompression sickness, and the velocity variation of the fluid in the process of flow was studied. According to the research results, it can be concluded that: (1) in the direct channel, the velocity of the fluid slows down with the increase of the gas composition, and the clogging can cause a more obvious trend of deceleration; (2) in the narrow channel, the fluid velocity changes abruptly when the gas enters and leaves the narrow area, and with the increase of the gas composition, the velocity change tends to be stable when the gas can completely fill the narrow area. This research provides a theoretical basis for further understanding the pathogenesis of decompression sickness.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference19 articles.

1. Decompression sickness in a swine model: Isobaric denitrogenation and perfluorocarbon at depth;Mahon;Aviation Space and Environmental Medicine,2006

2. Inflammatory cytokines and cell adhesion molecules in a rat model of decompression sickness;Bigley;Journal of Interferon and Cytokine Research,2008

3. Gas-content versus bubble decompression models;Doolette;South Pacific Underwater Medicine Society Joumal,2005

4. Development and testing of deterministic and probabilistic decompression models;Doolette;South Pacific Underwater Medicine Society Joumal,2005

5. Resolution and severity in decompression illness;Vann;Aviation Space and Environmental Medicine,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3