Synthesize a Sustainable Supply Chain of Biomass to Electricity via Mathematical Approach

Author:

Hew Chee Yau,Yoon Li Wan,Wan Yoke Kin

Abstract

Abstract The huge amount of biomass waste and palm oil mill effluent (POME) generated during oil extraction has prompted the need for a more sustainable framework in waste management. Since oil palm biomass waste is rich in lignocellulosic content, it can be potential to be converted into green energy such as bioelectricity via different pathway of processes such as the thermal conversion pathway and biochemical conversion pathway. This study proposes a mathematical approach to synthesise a sustainable supply chain of biomass to electricity by implementing the combined heat and power (CHP) system in palm oil mill. The optimum pathway of supply chain based on the technical, economical, and environmental aspects is generated. The purpose of this approach is to assists the industry players or owners to make decision in choosing the location of the pre-treatment technology, transportation method, location of power plant and configuration of CHP. A generic superstructure is first developed to achieve the objective. Then, a series of generic mathematical equations will then be formulated based on the pathways demonstrated in the generic superstructure. The mathematical equations involve general mass and energy balance, cost computation and carbon emission. The fuzzy optimisation concept will be adopted in this research to trade-off the conflicting objectives (maximize profit and minimize carbon footprint) in order to generate the optimum pathway. A palm oil-based bioelectricity supply chain case study in Selangor, Malaysia is solved to illustrate the presented approach. According to the optimised result in this case study, a total of 3,753.36 MW of bioelectricity can be generated per year. The result proved that the optimum pathway is feasible by comparing with the existing oil palm biomass-based power plant in Sarawak, where only 375 MW of electricity is generated by oil palm biomass. On the other hand, RM 7.25 million per year of net profit is estimated with a payback period of 2.81 years. Moreover, the CHP system is able to achieve 570 million kg CO2 per year.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. GreenPalm: What types of products and industries use palm oil?,2021

2. Pulp and paper production from oil palm empty fruit bunches: A current direction in Malaysia;Mohd Ali;J. Agric. Eng.,2020

3. Oil palm biomass residue in Malaysia: availability and sustainability;Aljuboori,2021

4. Proteomic researches for lignocellulose-degrading enzymes: A mini-review;Guo;Bioresour. Technol.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3