Transient stability analysis of IEEE 9-bus system integrated with DFIG and SCIG based wind turbines

Author:

Ramlochun Brish,Vaithilingam Chockalingam Aravind,Alsakati Ahmad Adel,Alnasseir Jamal

Abstract

Abstract Electricity is in high demand with a fast-growing population; hence it is advisable to turn towards green energy. In this research, Wind Turbine (WT) is modelled with two different types of induction generators (IGs), which are the Doubly-Fed Induction Generator (DFIG) and Squirrel-Cage Induction Generator (SCIG) and implemented to IEEE 9-Bus system to assess the transient stability. MATLAB/ Simulink R2019a platform was considered to carry the whole examination. DC1A excitation system was applied to Synchronous Generators (SGs) as well as Power System Stabilizer (PSS). The transmission line7-5 was found to suffer from a high peak value of a relative power angle of approximately 130 degrees. As for the settling time, without PSS it was 20.69 s and with PSS it became 6.23 s. A wind farm with a rated capacity of 60 MW was used in the system. WT integrated with DFIG has the lowest peak value of 127 degrees at Bus locations 4 and 5 and for SCIG, Bus 5 with a peak value of 136 degrees. Thus, it can be propelled as the perfect location. Moreover, this is due to the three-phase fault was located at the transmission line7-5 which is far away from Buses 4 and 5. In the end, the WT integrated with DFIG provides a lower peak value of relative power angle compared to SCIG, whereas for settling time, it is the opposite.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference39 articles.

1. A study on the wind as renewable energy in Perlis, Northern Malaysia;Daut;Energy Procedia,2012

2. Feasibility study of a novel 6v supercapacitor based energy harvesting circuit integrated with vertical axis wind turbine for low wind areas;Khan;International Journal of Renewable Energy Research,2016

3. A new generator topology for wind power generation;Aravind;Journal of Engineering Science and Technology,2018

4. MATLAB/Simulink-based transient stability analysis of a multimachine power system;Patel;International Journal of Electrical Engineering & Education,2002

5. Investigating voltage collapse and subsequent transient instability in a large power system;Aumuller;2003 IEEE Power Engineering Society General Meeting,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3