Data-Level Parallelism Oriented Memory Access and On-Chip Buffering Mechanisms for a Loop Accelerator

Author:

Zhou Weikang,Li Xianfeng,Chen Mingtao,Li Yang

Abstract

Abstract Memory access latency is always a bottleneck for the performance improvement of data-intensive applications. Exploiting the memory access patterns of Data-Level Parallelism(DLP) is a promising way for loop accelerators to reduce the latency significantly. This paper proposes two DLP-oriented data provisioning mechanisms to alleviate memory access latency: 1) DLP-oriented memory access(DoMA) for efficiently utilizes the available memory bandwidth. 2) a data access patterns aware on-chip buffer(PABUF) for exploiting reuse in a user-transparent manner. Unlike those loop accelerators using traditional DMA to access global memory, DoMA efficiently reduces the transmission of useless data by adjusting the size of requests intelligently. In addition, PABUF, which manages data using DLP’s memory access patterns without software engineering efforts, allows the loop accelerators to access data in parallel. Experiments show that when our mechanisms are integrated into a loop accelerator based on Rocket Chip Coprocessor(RoCC), it can achieve 4.20x-10.65x(6.81x on average) speedups with negligible overhead of power and area compared to L1 Cache.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3