Classification of COVID-19 and lung opacity using vision transformer on chest x-ray images

Author:

Toroghi Manoochehr Noghanian,Sheikh Usman Ullah,Irani Shima Shahi

Abstract

Abstract There are several recent works which had proposed an automatic computer-aided diagnosis (CAD) deep learning (DL) model to diagnose coronavirus disease 2019 (COVID-19) using chest x-ray images (CXR) to propose a high-accuracy CAD method to detect COVID-19 automatically. In this study, seven different models including Convolutional Neural Network (CNN) models such as VGG-16 and vision transformer (ViT) models, are proposed. The different proposed models are trained with a three-class balanced dataset consisting of 3,000 CXR images consisting of 1,000 CXR images for each class of COVID-19, Normal, and Lung-Opacity. A publicly available dataset to train and test the models is used from Kaggle-COVID-19-Radiography-Dataset. From the experiments, the accuracy of the VGG16 model is 93.44% and ViT’s is 92.33%. Besides, the binary classification between two classes of COVID-19 and Normal CXR with a limited number of just 100 images for each class, using a transfer learning technique, with a validation accuracy of 97.5% is proposed.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3