Prospective of biochar material production and process optimization using co-pyrolysis approach-A mini-review

Author:

Dafalla Mohamed,Inayat Abrar,Jamil Farrukh,Ghenai Chaouki

Abstract

Abstract This mini-review explores the perspective of biochar material production using the co-pyrolysis approach, which involves the thermal decomposition of biomass and other carbonaceous materials in the absence of oxygen at low temperatures (300-500°C). The study investigates the co-pyrolysis of biomass with different materials such as plastics, tires, municipal solid waste, and other organic waste to produce a high biochar yield. The review focuses on the benefits of co-pyrolysis, including higher yield and better quality of biochar, as well as reduced environmental impact by using different waste materials as feedstock. The review also highlights co-pyrolysis challenges, such as process optimization, feedstock preparation, and product characterization. The study concludes that co-pyrolysis of biomass with different materials can be a promising approach for producing high-quality biochar with multiple applications. However, more research is needed to optimize the co-pyrolysis process and evaluate the economic feasibility of biochar production using a computation approach.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3