Internet of Things (IoT) Fall Detection using Wearable Sensor

Author:

Yee Loh Mei,Chin Lim Chee,Fook Chong Yen,Dali Maslia Binti,Basah Shafriza Nisha,Chee Lim Sin

Abstract

Abstract The IoT fall detection system detects the fall through the data classification of falling and daily living activity. It includes microcontroller board (Arduino Mega 2560), Inertial Measurement Unit sensor (Gy-521 mpu6050) and WI-FI module (ESP8266-01). There total ten (10) subjects in this project. The data of falling and non-falling (daily living activity) can be identified. The falling is the frontward fall, while the daily living activity includes standing, sitting, walking and crouching. K-nearest neighbour (k-NN) classifiers were used in the data classification. The accuracy of k-NN classifiers were 100% between falling and non-falling class. The feature was selected based on the percentage of accuracy of the k-NN classifier. The features of the Aareal.z (97.14%) and Angle.x (97.24%) were selected due to the good performance during the classification of the falling and non-falling class. The performance of the Aareal.z (58.41%) and Angle.x (57.78%) were satisfactory during the sub-classification of the non-falling class. Hence, the feature of Aareal.z and Angle.x were selected as the features which were implemented in the IoT fall detection device.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference24 articles.

1. Falls among adult patients hospitalized in the United States: prevalence and trends;Bouldin;JPatient Saf,2013

2. Fall Prevention in Acute Care Hospitals: A Randomized Trial;Dykes;JAMA,2010

3. Home-Based Ankle Rehabilitation System: Literature Review and Evaluation;Chin;Teknologi,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3